364 research outputs found

    Transfers a deductive approach to gifts, gambles, and economy at large

    Get PDF
    This paper examines reinterprets coreentral issues in issues in economic anthropology by exploring the possibilities openedwhat would happen by the ifdevelopment of the concept of transfers becameas one of itsa key theoretical resources for the field. After briefly describing examples of use of the term “transfer” in anthropology and economics, where it is both pervasive and somewhat nebulous, Ttransfers are defined are taken to beas movements of economic matter, and while transactions are the forms that arise through the configuration of transfers. Transactional sub-categories such as Maussian gift exchange or barter market exchange are then taken as socio-cultural and/or theoretical reificationsalisations, thereby becoming the goal of anthropological description. The article Examining the politics of creating and sustaining transactional sub-categories by first looking at the elementary transfers out of which they are constructed places ‘one-way transfers’ such as slavery and theft on the same conceptual plane as reciprocal and market transactions, rather than as a derivative or a remainder of either/both. discusses a range of transactions in these terms, demonstrating the conceptual space that is opened when we examine the politics of creating and sustaining transactional types by first looking at the elementary transfers out of which they are constructed. Gifts and gambling are used as exemplarsconsidered in greater detail. Gambling and ‘pure gifts’ become types of ‘one-way transfers,’ with engineered to possess only one component transfer, and Maussian gifts explicitly connect transfers together in a particular politics. The paper then examines use of the term transfer in economics in a fruitful search for overlaps and points of collaboration before picksing out effective examples from the existing anthropological literature that employ an incipient version of the transfer strategy and in-so-doing demonstrate its nascent explanatory promise.This research has been supported by an ESRC+3 studentship [grant number ES/G012814/1], by a Research Fellowship at Trinity College, Cambridge, and by a British Academy Postdoctoral Fellowship [grant number pf160081]. The original fieldwork was also supported by the Royal Anthropological Institute through an Emslie Horniman fieldwork grant

    Forces between clustered stereocilia minimize friction in the ear on a subnanometre scale

    Full text link
    The detection of sound begins when energy derived from acoustic stimuli deflects the hair bundles atop hair cells. As hair bundles move, the viscous friction between stereocilia and the surrounding liquid poses a fundamental challenge to the ear's high sensitivity and sharp frequency selectivity. Part of the solution to this problem lies in the active process that uses energy for frequency-selective sound amplification. Here we demonstrate that a complementary part involves the fluid-structure interaction between the liquid within the hair bundle and the stereocilia. Using force measurement on a dynamically scaled model, finite-element analysis, analytical estimation of hydrodynamic forces, stochastic simulation and high-resolution interferometric measurement of hair bundles, we characterize the origin and magnitude of the forces between individual stereocilia during small hair-bundle deflections. We find that the close apposition of stereocilia effectively immobilizes the liquid between them, which reduces the drag and suppresses the relative squeezing but not the sliding mode of stereociliary motion. The obliquely oriented tip links couple the mechanotransduction channels to this least dissipative coherent mode, whereas the elastic horizontal top connectors stabilize the structure, further reducing the drag. As measured from the distortion products associated with channel gating at physiological stimulation amplitudes of tens of nanometres, the balance of forces in a hair bundle permits a relative mode of motion between adjacent stereocilia that encompasses only a fraction of a nanometre. A combination of high-resolution experiments and detailed numerical modelling of fluid-structure interactions reveals the physical principles behind the basic structural features of hair bundles and shows quantitatively how these organelles are adapted to the needs of sensitive mechanotransduction.Comment: 21 pages, including 3 figures. For supplementary information, please see the online version of the article at http://www.nature.com/natur

    Precursors to social and communication difficulties in infants at-risk for autism: gaze following and attentional engagement

    Get PDF
    Whilst joint attention (JA) impairments in autism have been widely studied, little is known about the early development of gaze following, a precursor to establishing JA. We employed eye-tracking to record gaze following longitudinally in infants with and without a family history of autism spectrum disorder (ASD) at 7 and 13 months. No group difference was found between at-risk and low-risk infants in gaze following behaviour at either age. However, despite following gaze successfully at 13 months, at-risk infants with later emerging socio-communication difficulties (both those with ASD and atypical development at 36 months of age) allocated less attention to the congruent object compared to typically developing at-risk siblings and low-risk controls. The findings suggest that the subtle emergence of difficulties in JA in infancy may be related to ASD and other atypical outcomes

    Distinguishing Asthma Phenotypes Using Machine Learning Approaches.

    Get PDF
    Asthma is not a single disease, but an umbrella term for a number of distinct diseases, each of which are caused by a distinct underlying pathophysiological mechanism. These discrete disease entities are often labelled as asthma endotypes. The discovery of different asthma subtypes has moved from subjective approaches in which putative phenotypes are assigned by experts to data-driven ones which incorporate machine learning. This review focuses on the methodological developments of one such machine learning technique-latent class analysis-and how it has contributed to distinguishing asthma and wheezing subtypes in childhood. It also gives a clinical perspective, presenting the findings of studies from the past 5 years that used this approach. The identification of true asthma endotypes may be a crucial step towards understanding their distinct pathophysiological mechanisms, which could ultimately lead to more precise prevention strategies, identification of novel therapeutic targets and the development of effective personalized therapies

    Eligibility for interventions, co-occurrence and risk factors for unhealthy behaviours in patients consulting for routine primary care: results from the Pre-Empt study

    Get PDF
    Smoking, excessive drinking, lack of exercise and a poor diet remain key causes of premature morbidity and mortality globally, yet it is not clear what proportion of patients attending for routine primary care are eligible for interventions about these behaviours, the extent to which they co-occur within individuals, and which individuals are at greatest risk for multiple unhealthy behaviours. The aim of the trial was to examine 'intervention eligibility' and co-occurrence of the 'big four' risky health behaviours - lack of exercise, smoking, an unhealthy diet and excessive drinking - in a primary care population. Data were collected from adult patients consulting routinely in general practice across South Wales as part of the Pre-Empt study; a cluster randomised controlled trial. After giving consent, participants completed screening instruments, which included the following to assess eligibility for an intervention based on set thresholds: AUDIT-C (for alcohol), HSI (for smoking), IPAQ (for exercise) and a subset of DINE (for diet). The intervention following screening was based on which combination of risky behaviours the patient had. Descriptive statistics, χ2 tests for association and ordinal regressions were undertaken. Two thousand sixty seven patients were screened: mean age of 48.6 years, 61.9 % female and 42.8 % in a managerial or professional occupation. In terms of numbers of risky behaviours screened eligible for, two was the most common (43.6 %), with diet and exercise (27.2 %) being the most common combination. Insufficient exercise was the most common single risky behaviour (12.0 %). 21.8 % of patients would have been eligible for an intervention for three behaviours and 5.9 % for all four behaviours. Just 4.5 % of patients did not identify any risky behaviours. Women, older age groups and those in managerial or professional occupations were more likely to exhibit all four risky behaviours. Very few patients consulting for routine primary care screen ineligible for interventions about common unhealthy behaviours, and most engage in more than one of the major common unhealthy behaviours. Clinicians should be particularly alert to opportunities to engaging younger, non professional men and those with multi-morbidity about risky health behaviour. ISRCTN22495456. BACKGROUND METHODS RESULTS CONCLUSION TRIAL REGISTRATIO

    Harmonin-b, an actin-binding scaffold protein, is involved in the adaptation of mechanoelectrical transduction by sensory hair cells

    Get PDF
    We assessed the involvement of harmonin-b, a submembranous protein containing PDZ domains, in the mechanoelectrical transduction machinery of inner ear hair cells. Harmonin-b is located in the region of the upper insertion point of the tip link that joins adjacent stereocilia from different rows and that is believed to gate transducer channel(s) located in the region of the tip link's lower insertion point. In Ush1cdfcr-2J/dfcr-2J mutant mice defective for harmonin-b, step deflections of the hair bundle evoked transduction currents with altered speed and extent of adaptation. In utricular hair cells, hair bundle morphology and maximal transduction currents were similar to those observed in wild-type mice, but adaptation was faster and more complete. Cochlear outer hair cells displayed reduced maximal transduction currents, which may be the consequence of moderate structural anomalies of their hair bundles. Their adaptation was slower and displayed a variable extent. The latter was positively correlated with the magnitude of the maximal transduction current, but the cells that showed the largest currents could be either hyperadaptive or hypoadaptive. To interpret our observations, we used a theoretical description of mechanoelectrical transduction based on the gating spring theory and a motor model of adaptation. Simulations could account for the characteristics of transduction currents in wild-type and mutant hair cells, both vestibular and cochlear. They led us to conclude that harmonin-b operates as an intracellular link that limits adaptation and engages adaptation motors, a dual role consistent with the scaffolding property of the protein and its binding to both actin filaments and the tip link component cadherin-23

    Old Galaxies in the Young Universe

    Full text link
    More than half of all stars in the local Universe are found in massive spheroidal galaxies, which are characterized by old stellar populations with little or no current star formation. In present models, such galaxies appear rather late as the culmination of a hierarchical merging process, in which larger galaxies are assembled through mergers of smaller precursor galaxies. But observations have not yet established how, or even when, the massive spheroidals formed, nor if their seemingly sudden appearance when the Universe was about half its present age (at redshift z \approx 1) results from a real evolutionary effect (such as a peak of mergers) or from the observational difficulty of identifying them at earlier epochs. Here we report the spectroscopic and morphological identification of four old, fully assembled, massive (>10^{11} solar masses) spheroidal galaxies at 1.6<z<1.9, the most distant such objects currently known. The existence of such systems when the Universe was only one-quarter of its present age, shows that the build-up of massive early-type galaxies was much faster in the early Universe than has been expected from theoretical simulations.Comment: Nature, in press as a Letter, 8th July issue. 12 pages, 1 Table, 4 Figure

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio
    corecore